Endovenous Thermal Ablation
Treatment/Therapy

Marcus Stanbro, DO, FSVM, RPVI
Assistant Professor of Clinical Surgery
USC School of Medicine-Greenville
GHS-Center for Venous and Lymphatic Medicine
Greenville, SC
March 28, 2015
Disclosures

No pertinent disclosures
Vein Stripping largely replaced by catheter-based ablations
Endovenous Thermal Ablation (ETA)

- Radiofrequency ablation (RFA)
- Endovenous laser ablation (EVLA)
- Steam ablation
ETA
Mechanism

- Thermal injury w/ vein wall collagen denaturation
- Vein wall inflammation
- Fibrosis
- Occlusion
ETA
Treatment Plan

- H & P
- Duplex documenting patent deep veins and enlarged/incompetent saphenous vein
- Careful explanation to patient
- Use physician and patient recorded outcome measures
 - VCSS, photos, QoL scores
ETA
Indications

- Symptomatic varicose veins
- Asymptomatic varicose veins
- Chronic venous insufficiency w/ or w/o complications

- ALL secondary or associated with REFLUX of the appropriate saphenous veins or other “appropriate” veins
ETA
Amenable Veins

- GSV (1A)
- SSV (1A)
- Accessory saphenous veins (1B)
- Giacomini & cranial extension of SSV (1B)
- Perforating veins (1C)
- Other superficial veins (1C)
- Malformations (1C)
- Residual veins after previous treatment (1C)
ETA
Contraindications

- Absolute:
 - Acute DVT or STP
 - Acute infections at puncture sites
 - Deep vein obstruction where the target vein functions as a collateral.
ETA
Contraindications

- Relative:
 - Pregnancy
 - Immobility
 - PAD w/ ABI <0.5 or ankle pressure <60
 - Thrombophilia or Hx of previous DVT
 - Unable to undergo local anesthesia
 - Decompensated leg swelling
 - Terminal diseases or uncontrolled severe diseases (uncontrolled DM)
ETA
Contraindications

- Technical issues:
 - Tortuous vein
 - Too small
 - Previous STP with intraluminal webs, etc.
 - Vein segment too short
 - Orifice of SFJ to be excessively large*
Intraluminal webs - STP
ETA
Vein Access
ETA
Proper placement
ETA
Anesthesia

- Can be done under local, regional, general
- Even if done under regional/general:
 - Treated vein should still have tumescent fluid infiltrated around it to create “heat sink” and facilitate vein compression
 - Should be infiltrated under duplex guidance
ETA
How much energy?

- Radiofrequency:
 - **Segmental RFA:** Energy automatically adjusted by generator to maintain heat at 120°C for a 20 second cycle. Additional cycles can be applied (top of junction or areas of saccular enlargement)
 - **Bipolar RFA:** Setting at 20W to deliver 40-45J/cm. Pull back speed can be adjusted
Radiofrequency “Closure” Technique

- Outpatient procedure approximately 60 min. long
- Local tumescent + heparin drip
- Temperature at vein wall controlled
- 90% closure at 2 yrs
- FDA-approved for RX of Great Saphenous Vein

Photos courtesy of VNUS Medical, Inc.
RF Catheter
ETA
How much energy?

- **EVLA:**
 - Energy density delivery is dependent upon:
 - Diameter of vein
 - Wavelength of the laser
 - Laser power setting (W)
 - Fiber type
 - Calculated as:
 - Linear Endovenous Energy Density (LEED) in J/cm
 - Endovenous Fluence Equivalent (EFE) in J/cm²
Endovenous Laser Ablation

- Outpatient procedure approximately 60 min long
- Only local tumescent anesthesia required
- Usually continuous pullback
- FDA-approved for RX of GSV, SSV, & accessory saphenous v
- Multiple wavelengths available:
 - 810nm
 - 940nm
 - 1320nm
 - 1470nm
ETA
How much energy?

- Laser target (chromophore)
 - Hemoglobin: 810, 940, 980, and 1064 nm
 - Water: 1320 and 1470 nm
ETA
How much energy?

- **EVLA:**
 - 810-980 nm lasers:
 - Bare fiber: LEED ≥ 60-80 J/cm
 - EFE > 20 J/cm²
 - Protected fibers: allow for lower LEED and EFE
 - 1320-1470 nm lasers:
 - Initially follow manufacturers recommended settings:
 - LEED 40-50 J/cm
ETA
How much energy?

■ **EVLA:**

■ **Sliding Scale based upon diameter:**
 - 5cm use ~ 50 J/cm
 - 10cm ~120 J/cm

 Almeida JI, Raines JK. Radiofrequency ablation and laser ablation in the treatment of varicose veins.
 Ann Vasc Surg 2006;20:547-552

■ **Typically, 50-80 J/cm**

 Chapter 12 , Fundamentals of Phlebology. Based on two studies of 810 and 980 nm lasers
810 vs. 980

- 30 legs each wavelength
- 50 joules/cm
- 1 yr. follow up
- Recanalization 1 yr. – 810 (2) 980 (2)
- “Both laser wavelengths were effective in treating GSV insufficiency, with no major complication and a paucity of adverse outcomes”

Kabnick LS. Outcome of different endovenous wavelengths for Great saphenous vein ablation. J Vasc Surg 2006;43:88-93
ETA

Comments about SSV

- Can be treated with same high success rate
- Some authors report higher complication rate
 - DVT & Sural nerve injury
- Keep cath tip well below SPJ and avoid the lower 1/3rd of SSV
ETA-Perforators
Techniques for Dealing with Perforating Veins

- Linton – Variants of open
- SEPS – Subfascial Endoscopic Perforator Surgery
- PAPs – Percutaneous Ablation of Perforators
 - RF
 - Laser
- Injection sclerotherapy (Foam)
IPV Ablation Indications

- **CEAP 4, 5, 6**
 - Especially if perforator is underneath or close proximity to ulcer site

- **CEAP 2 or 3? - if source of VV or pain**
 - Not recommended by SVS/AVF guidelines

- **All other sources treated first**

- **Large perforators (≥ 3.5mm)**

ETA
Post-Treatment

- Pads over insertion site
- +/- wraps
- Most use 30-40mmHg compression hose
- Many advocate the use of eccentric compression
 - Gauze or foam padding over the course of the treated vein to create localized compression
ETA
Post-Treatment

- Routine DVT prophylaxis not necessary
- Most recommend a F/U visit and duplex scan by POD 10-14
- 3-6 month F/U w/ duplex also recommended
ETA
Post-Treatment

- **Recommended terminology**
 - Recanalization (w/ or w/o reflux)
 - Neovascularization
 - Primary ablation
 - Primary assisted ablation (before clinical failure)
 - Secondary ablation
ETA
Minor Complications

- Pain
- Ecchymosis
- Erythema
- Hematoma
- Hyperpigmentation
- Paresthesias
- Phlebitis
- Infection
- Telangiectatic Matting
ETA
Major Complications

- VTE (PE and/or DVT)
- Arterial damage (AVF)
- Severe nerve damage
- Skin burns (typically early experience or patients w/o tumescent)
- Fiber fracture/breakage during the procedure
- Stroke (one case report)

- Overall, quite RARE
Endovenous Heat Induced Thrombosis (EHIT)
ETA Complications
EHIT

- **Endovenous Heat Induced Thrombosis—WHY?**
- **Identified Risk Factors**
 - Male gender
 - Large GSV diameter
 - Multiple phlebectomies
 - Higher Caprini scores
 - Previous STP
 - ?Catheter tip placement?

1st International Guidelines for ETA - 2012
ETA Complications

EHIT

- Endovenous Heat Induced Thrombosis
- Or, Post Ablation Superficial Thrombus Extension (PASTE)
- Classification:
 - Class 0 – distal to SFJ
 - Class 1 – flush to the SFJ
 - Class 2 – thrombus extending into lumen of the CFV (<50%)
 - Class 3 – thrombus >50% involvement of the CFV
 - Class 4 – occlusive thrombosis of the CFV
ETA Complications
EHIT Treatment

Classification:
- Class 0 – (distal to SFJ) NO TREATMENT
- Class 1 – flush to the SFJ NO TREATMENT
- Class 2 – (<50%) Short term LMWH w/ serial scans
 - Antiplatelet agents
 - Serial duplexes
- Class 3 – (>50%) Treat as DVT, mc LMWH
- Class 4 – occlusive clot Treat as DVT, mc LMWH
Example of Class 2
Length of vein to be treated
Hach’s Perforator
Profunda Femoral Vein
These perforators are usually longer and tortuous, so foam sclero may be better.
Pre-op finding-
Asymmetric flow at the CFV
ETA
Conclusions

- Recommended Reading:

ETA

Conclusions

- If attention is paid to LEED and proper technique, differences in wavelengths or technology probably not significant.

- Both RFA and EVLA are effective and safe

- Be aware of EHIT
Endovenous Thermal Ablation
Treatment/Therapy

Thank you.

G H S C l i n i c a l U n i v e r s i t y P a r t n e r s